
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BNEM: A BOLTZMANN SAMPLER BASED ON BOOT-
STRAPPED NOISED ENERGY MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating independent samples from a Boltzmann distribution is a highly relevant
problem in scientific research, e.g. in molecular dynamics, where one has initial
access to the underlying energy function but not to samples from the Boltzmann
distribution. We address this problem by learning the energies of the convolution
of the Boltzmann distribution with Gaussian noise. These energies are then used
to generate independent samples through a denoising diffusion approach. The
resulting method, NOISED ENERGY MATCHING (NEM), has lower variance and
only slightly higher cost than previous related works. We also improve NEM
through a novel bootstrapping technique called BOOTSTRAP NEM (BNEM) that
further reduces variance while only slightly increasing bias. Experiments on a
collection of problems demonstrate that NEM can outperform previous methods
while being more robust and that BNEM further improves on NEM.

1 INTRODUCTION

A fundamental problem in probabilistic modeling and physical systems simulation is to sample
from a target Boltzmann distribution µtarget ∝ exp(−E(x)) specified by an energy function E(x).
A prominent example is protein folding, which can be formalized as sampling from a Boltzmann
distribution (Śledź & Caflisch, 2018) with energies determined by inter-atomic forces (Case et al.,
2021). Having access to efficient methods for solving the sampling problem could significantly speed
up drug discovery (Zheng et al., 2024) and material design (Komanduri et al., 2000).

However, existing methods for sampling from Boltzmann densities have problems scaling to high
dimensions and/or are very time-consuming. As an alternative, Akhound-Sadegh et al. (2024)
proposed Iterated Denoising Energy Matching (iDEM), a neural sampler based on denoising diffusion
models which is not only computationally tractable but also guarantees good coverage of all modes.
iDEM uses a bi-level training scheme that iteratively generates samples from the learned sampler and
then does score matching using only the target energy and its gradient. Nevertheless, iDEM requires
a large number of samples for its Monte Carlo (MC) score estimate to have low variance and a large
number of integration steps even when sampling from simple distributions. Also, its effectiveness
highly depends on the choice of noise schedule and score clipping. These disadvantages demand
careful hyperparameter tuning and raise issues when working with complicated energies.

To further push the boundary of diffusion-based neural samplers, we propose NOISED ENERGY
MATCHING (NEM), which learns a series of noised energy functions instead of the corresponding
score functions. Despite a need to differentiate the energy network when simulating the diffusion
sampler, NEM targets less noisy objectives as compared with iDEM. Additionally, using an energy-
based parametrization enables NEM to use bootstrapping techniques for more efficient training
and Metropolis-Hastings corrections for more accurate simulation. By applying the bootstrapping
technique, we propose a variant of NEM called BOOTSTRAP NEM (BNEM). BNEM estimates high
noise-level energies by bootstrapping from current energy estimates at slightly lower noise levels.
BNEM increases bias but reduces variance in its training target.

We conduct experiments on a 2-dimensional 40 Gaussian Mixture Model (GMM), a 4-particle
double-welling potential (DW-4), a 13-particle Lennard-Jones potential (LJ-13) and a 55-particle
Lennard-Jones potential (LJ-55). We empirically find that our methods lead to state-of-the-art
performance on these tasks. Additionally, we found that targeting energies instead of scores is more

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Both EnDEM and BEnDEM parameterize a time-dependent energy network Eθ(xt, t) to
target the energies of noised data. EnDEM targets an MC energy estimator computed by system
energies; BEnDEM targets a Bootstrap energy estimator computed by learned energies at a slightly
lower noise level. Contours are the ground truth energies at different noise levels; • represents
samples used for computing the MC energy estimator, • represents samples used for computing the
Bootstrap energy estimator, and the white contour line represents the learned energy at time u.

robust, requiring fewer Monte Carlo samples during training and fewer integration steps during
sampling. This compensates for the need to differentiate through energy networks to obtain scores.

Our contributions are as follows:

• We introduce NEM in section 3.3, including its methodology and theoretical analysis on
training target variance and bias, which showcases the advantage of targeting noised energies
rather than noised scores.

• We introduce BNEM in section 3.4, where we also theoretically show the Variance-Bias
trade-off implied by the bootstrapping energy estimation.

• We present experiment results on four different tasks in section 5, showcasing the advantage
of BNEM and NEM compared with DEM. We also conduct ablation studies, which show
that NEM is more robust than DEM regarding the number of samples used for training and
the number of integration steps used for sampling.

2 PRELIMINARY

We consider learning a generative model for sampling from the Boltzmann distribution

µtarget =
exp(−E(x))

Z
, where Z =

∫
exp(−E(x))dx, (1)

E is the energy function and Z is the intractable partition function. Generating accurate samples from
this type of distribution is highly challenging. The recent success of Diffusion Models provides a
promising way to solve this issue.

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) learn a generative
process that starts from a known and tractable base distribution, a.k.a. denoising process, which
is the inverse of a tractable noising process that starts from the target distribution. Formally, given
samples from the target distribution, x0 ∼ µtarget, the noising process is an SDE towards a known

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

base distribution p1:

dxt = f(xt, t)dt+ g(t)dwt, where t ∈ [0, 1], (2)

f(xt, t) is called drift coefficient, g(t) is the diffusion coefficient and wt is standard Brownian Motion.
Diffusion Models work by approximately solving the following inverse SDE:

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt+ g(t)dw̃t (3)

where w̃t is again standard Brownian Motion. In the example of the Variance Exploding (VE) noising
process, f(xt, t) ≡ 0 and the perturbation kernel of the noising process is given by qt|0(xt|x0) =

N (xt;x0, σ
2
t), where σ2

t :=
∫
g2(s)ds. Then the learning objective of DMs is obtained by using

Tweedie’s formula (Efron, 2011):

LDM = Ex0∼p0,t∼[0,1],xt∼qt|0

[∥∥∥∥x0 − xt

σ2
t

− sθ(xt, t)

∥∥∥∥2
]

(4)

which allows us to approximate the marginal scores∇ log pt(xt) with a score network sθ(xt, t) that is
parameterized by θ and that targets the conditional scores∇ log pt|0(xt|x0) = ∇ logN (xt;x0, σ

2
t I).

3 METHODS

In this section, we first provide an overview before presenting the formalization and training paradigm
of simulation-free energy matching. We then discuss the theoretical advantages of our energy match-
ing over score matching. Finally, we describe how bootstrapping is employed to gain improvement.

3.1 OVERVIEW OF NEM FRAMEWORK

This work intends to train a diffusion-based neural sampler that enables diffusion sampling to draw
samples from µtarget(x) =

exp(−E(x))
Z , where we only have access to the energy function E without

any known data from the target distribution.

As in Figure 1, our methods apply the iterative training paradigm, where the inner loop updates
the buffer for training the neural sampler, and the outer loop uses the neural sampler to collect new
pseudo data to update the buffer. In the inner loop, our model is trained on varied forms of Monte
Carlo estimation of the energy.

3.2 DENOISING DIFFUSION-BASED BOLTZMANN SAMPLER

We consider training an energy-based diffusion sampler corresponding to a variance exploding (VE)
noising process defined by dxt = g(t)dwt, where t ∈ [0, 1], g(t) is a function of time and wt is
Brownian motion. The reverse SDE with Brownian motion w̄t is dxt = −g2(t)∇ log pt(xt)dt +
g(t)dw̄t, where pt is the marginal of the diffusion process starting at p0 := µtarget.

Given the energy E(x) and the perturbation kernel qt(xt|x0) = N (xt;x0, σ
2
t), where exp(−E(x)) ∝

p0(x) and σ2
t :=

∫ t

s
g2(s)ds, one can obtain the marginal noised density pt as

pt(xt) ∝
∫

exp(−E(x0))N (xt;x0, σ
2
t I)dx0 = EN (x;xt,σ2

t I)
[exp(−E(x))]. (5)

Going a step further, the RHS of Eq. 5 defines a Boltzmann distribution over the noise-perturbed
distribution pt. The noised energy is defined as the negative logarithm of this unnormalized density

Et(x) := − logEN (x;xt,σ2
t I)

[exp(−E(x))], where exp(−Et(xt)) ∝ pt(xt). (6)

Training on MC estimated targets We can approximate the gradient of log pt by fitting a score
network sθ(xt, t) to the gradient of Monte Carlo (MC) estimates of Eq. 6, leading to iDEM. The MC
score estimator SK and the training objective can be written as

SK(xt, t) : = ∇ log
1

K

K∑
i=1

exp(−E(x(i)
0|t)), x

(i)
0|t ∼ N (x;xt, σ

2
t I), (7)

LDEM(xt, t) : = ∥SK(xt, t)− sθ(xt, t)∥2. (8)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Alternatively, we can fit an energy network Eθ(xt, t) to MC estimates of Eq. 6. The gradient of this
energy network w.r.t. input xt, i.e. ∇Eθ(xt, t), can then be used to estimate the score required for
diffusion-based sampling. The MC energy estimator EK and the training objective can be written as

EK(xt, t) : = − log
1

K

K∑
i=1

exp(−E(x(i)
0|t)), x

(i)
0|t ∼ N (x;xt, σ

2
t I), (9)

LNEM(xt, t) : = ∥EK(xt, t)− Eθ(xt, t)∥2. (10)
To enable diffusion-based sampling, one is required to differentiate the energy network to obtain
the marginal scores, i.e. ∇Eθ(xt, t), which doubles the computation of evaluating Eθ(xt, t). Notice
that SK(xt, t) = −∇EK(xt, t), regressing the MC energy estimator EK doesn’t need to compute
the gradient of target energy E during training but it is required to compute the gradient of the
energy network Eθ during sampling. In other words, it moves the need for differentiation from given
energy function E to neural networks Eθ, which can be beneficial for training on complicated energy
functions.

Bi-level Iterative Training Scheme To train the diffusion on the estimated targets, we should
obtain noising exact samples from the target. Previous works (Akhound-Sadegh et al., 2024; Midgley
et al., 2023) used data points generated by a current learned denoising procedure.

We follow their approach and use a bi-level iterative training scheme for noised energy matching.
This involves

• An outer loop that simulates the diffusion sampling process to generate more informative
samples. These samples are then used to update a replay buffer B.

• A simulation-free inner loop that matches the noised energies (NEM) or scores (DEM)
evaluated at noised versions of the samples stored in the replay buffer.

The significance of this iterated training scheme is proven by Akhound-Sadegh et al. (2024). We,
therefore, stick to using it for all relevant samplers’ training. The iterated training procedure of NEM
is illustrated in Algorithm 1, and its training pipeline is visualized in Figure 1.

3.3 ENERGY-BASED LEARNING VS SCORE-BASED LEARNING

Both the MC score estimator SK and the MC energy estimator EK are biased estimators, where
the bias of SK (Eq. 12) is characterized by Akhound-Sadegh et al. (2024) that it can decrease to 0
when the number of MC samples K increases. We first characterize the bias of EK in the following
Proposition 1, which shows the advantage of NEM in terms of the smaller bias of its regression target.

Proposition 1 If exp(−E(x(i)
0|t)) is sub-Gaussian, then there exists a constant c̃(xt) such that with

probability 1− δ over x(i)
0|t ∼ N (xt, σ

2
t), we have

∥EK(xt, t)− Et(xt)∥ ≤
c̃(xt)

√
log (1/δ)√
K

(11)

with c(xt)/c̃(xt) = 2(1 + ∥∇Et(xt)∥), where

∥SK(xt, t)− St(xt)∥ ≤
c(xt)

√
log (1/δ)√
K

. (12)

Proposition 1 shows that the training target of NEM has a smaller error bound (Eq. 11) than the one
of DEM (Eq. 12), especially in regions with a steep gradient, i.e. large ∥∇Et(x))∥. Specifically, the
bias of EK can be charecterized through the above error bound, which is provided in the following
corollary:

Corollary 1 If exp(−E(x(i)
0|t)) is sub-Gaussian, then the bias of EK can be approximated as

Bias[EK(xt, t)] := E[EK(xt, t)]− Et(xt) =
v0t(xt)

2m2
t (xt)K

(13)

where mt(x) = exp(−Et(xt)) and v0t(xt) = VarN (x;xt,σ2
t I)

[exp(−Et(x))].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 Iterated training for Noised Energy Matching

Require: Network Eθ, Batch size b, Noise schedule σ2
t , Base distribution p1, Num. integration steps

L, Replay buffer B, Max Buffer Size |B|, Num. MC samples K
1: while Outer-Loop do
2: {x1}bi=1 ∼ p1(x1)
3: {x0}bi=1 ← sde.int({x1}bi=1,−∇Eθ, L) ▷ Simulate the reverse SDE for sampling
4: B = (B ∪ {x0}bi=1) ▷ Update Buffer B
5: while Inner-Loop do
6: x0 ← B.sample() ▷ Uniform sampling from B
7: t ∼ U(0, 1), xt ∼ N (x0, σ

2
t)

8: LNEM(xt, t) = ∥EK(xt, t)− Eθ(xt, t)∥2
9: θ ← Update(θ,∇θLNEM)

10: end while
11: end while
Ensure: sθ

Algorithm 2 Inner-loop of Bootstrap Noised Energy Matching training

Require: Network Eθ, Batch size b, Noise schedule σ2
t , Replay buffer B, Num. MC samples K

1: while Inner-Loop do
2: x0 ← B.sample() ▷ Uniform sampling from B
3: t ∼ U(0, 1), xt ∼ N (x0, σ

2
t)

4: n← arg{i : t ∈ [ti, ti+1]} ▷ Identify the time split range of t
5: s ∼ U(tn−1, tn), xs ∼ N (x0, σ

2
s)

6: ls(xs)← ∥EK(xs, s)− Eθ(xs, s)∥2/σ2
s

7: lt(xt)← ∥EK(xt, t)− Eθ(xt, t)∥2/σ2
t

8: α← min(1, lt(xt)/ls(xs))
9: with probability α,

10: LBNEM(xt, t) = ∥EK(xt, t, s;StopGrad(θ))− Eθ(xt, t)∥2
11: Otherwise, ▷ Use MC estimator if the model is not well trained
12: LBNEM(xt, t) = ∥EK(xt, t)− Eθ(xt, t)∥2
13: θ ← Update(θ,∇θLBNEM)
14: end while
Ensure: Eθ

The complete proofs of Proposition 1 and Corollary 1 are given in Appendix A. Additionally, we
characterize the variances of SK and EK as follows.

Proposition 2 If exp(−E(x(i)
0|t)) is sub-Gaussian and ∥∇ exp(−E(x(i)

0|t))∥ is bounded, the total
variance of the MC score estimator SK is consistently larger than that of the MC energy estimator
EK in regions associated with low energies, with

tr (Cov[SK(xt, t)])

Var[EK(xt, t)]
= 4(1 + ∥∇Et(xt)∥)2. (14)

In regions associated with high energies, Var[EK(xt, t)] < tr(Cov[SK(xt, t)]) holds when the target
energy E(xt) is positively related to at least one element of the score∇E(xt).

This shows that the MC energy estimator can provide a less noisy training signal than the score
one, showcasing the theoretical advantage of NEM compared with DEM. One might wonder if the
differentiation of the energy network could amplify errors in NEM. The answer is that, even though
the energy errors are amplified, these errors are typically very small, and therefore the errors in
the differentiated energy are still smaller than the score errors. Our experiments illustrate this by
supporting NEM over DEM. The complete proof for the above results is provided in Appendix B.

3.4 IMPROVEMENT WITH BOOTSTRAPPED ENERGY ESTIMATION

Using an energy network that directly models the noisy energy landscape has additional advantages.
Intuitively, the variances of EK and SK explode at high noise levels as a result of the VE noising

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

process. However, we can reduce variance of the training target in NEM by using the learned noised
energies at just slightly lower noise levels rather than using the target energy at time t = 0. Based
on this, we propose Bootstrap NEM, or BNEM, which uses a novel MC energy estimator at high
noise levels that is bootstrapped from the learned energies at slightly lower noise levels. Suppose that
Eθ(·, s) is an energy network that already provides an accurate estimate of the energy at a low noise
level s, we can then construct a bootstrap energy estimator at a higher noise level t > s by using

EK(xt, t, s; θ) : = − log
1

K

K∑
i=1

exp(−Eθ(x
(i)
s|t, s)), x

(i)
s|t ∼ N

(
x;xs, (σ

2
t − σ2

s)I
)
, (15)

The loss used by BNEM is then

LBNEM(xt, t|s) : = ∥EK (xt, t, s;StopGrad(θ))− Eθ(xt, t)∥2 , (16)

where the gradient of (Eq. 15) with respect to θ is stopped. Let Eθ(xs, s) is learned from the original
MC estimator (Eq. 9) and ideally we suppose it learns perfectly where Eθ̃(xs, s) = EK(xs, s). By
plugging it into Eq. 15, one can show that bootstrapping once (0 → s → t) is equivalent to target
Eq. 9 with K2 MC samples, i.e. EK(xt, t, s; θ̃) = EK2(xt, t). Therefore, bootstrapping multiple
times through the bootstrapping trajectory is ideally equivalent to use polynomial number of MC
samples, leading to large reductions in both variance and bias of the training target. A detailed
discussion can be found in Appendix C.

However, as EK is a random variable, one can only fit its expected value which is biased (see
Corollary 1). Therefore, though we can polynomially reduce (w.r.t. number of MC samples K)
the original variance and bias of EK , we introduce an accumulated bias when plugging E[EK] into
Eq. 15. Nevertheless, with appropriate bootstrapping hyperparameters, the bias of the bootstrapped
estimator is not necessarily larger than EK . Additionally, it benefits from a training target with
reduced variance. We characterize both the bias and variance of this bootstrap energy estimator by
the following proposition:

Proposition 3 Given a bootstrap trajectory {si}ni=0 such that σ2
si − σ2

si−1
≤ κ, where s0 = 0,

sn = 1 and κ > 0 is a small constant. Suppose Eθ is incrementally optimized from t ∈ [0, 1] as
follows: if t ∈ [si, si+1], Eθ(xt, t) targets an energy estimator bootstrapped from ∀s ∈ [si−1, si]
using Eq. 15. For ∀0 ≤ i ≤ n and ∀s ∈ [si−1, si], the variance of the bootstrap energy estimator is
given by

Var[EK(xt, t, s; θ)] =
vst(xt)

v0t(xt)
Var[EK(xt, t)] (17)

and the bias of EK(xt, t, s; θ) is given by

Bias[EK(xt, t, s; θ)] =
v0t(xt)

2m2
t (xt)Ki+1

+

i∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

. (18)

where mz(xz) = exp(−Ez(xz)) and vyz(xz) = VarN (x;xz,(σ2
z−σ2

y)I)
[exp(−Ey(x))] for ∀0 ≤ y <

z ≤ 1.
A detailed discussion and proof are given in Appendix D. Proposition 3 demonstrates that the bootstrap
energy estimator, which estimates the noised energies by sampling from a xt-mean Gaussian with
smaller variance, can reduce the variance of the training target while this new target can introduce
accumulated bias. Proposition 3 shows that, the bias of BNEM consists of two components: (1) the
target bias term which is reduced by a factor of Ki compared to NEM, and (2) the sum of intermediate
biases, i.e. accumulated bias, which are each reduced by factors of Kj where j ≥ 1. Since K is
typically large and i ≥ 1, the target bias term in BNEM is substantially smaller than in NEM. While
BNEM does introduce additional accumulated terms, these terms are also reduced by powers of K,
resulting in an overall lower bias compared to NEM under similar computational budgets. Therefore,
within proper choice of number of MC samples K and bootstrap trajectory {si}ni=1, the bias of
BNEM (Eq. 13) can be smaller than that of NEM (Eq. 18) while enjoying a lower-variance training
target. This provides theoretical guarantee for improving performance via bootstrapping. In the
following paragraph, we define how we select s and t using a novel variance-controlled bootstrap
schedule and training scheme.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Variance-Controlled Bootstrap Schedule BNEM aims to trade the bias of the learning target to
its variance. To ensure that the variance of the Bootstrap energy estimator at t bootstrapped from
s is controlled by a predefined bound β, i.e. σ2

t − σ2
s ≤ β, we first split the time range [0, 1] with

0 = t0 < t1 < ... < tN = 1 such that σ2
ti+1
− σ2

ti ≤ β/2; then we uniformly sample s and t from
adjacent time splits during training for variance control.

Training of BNEM To train BNEM, it is crucial to account for the fact that bootstrap energy
estimation at t can only be accurate when the noised energy at s is well-learned. To favor this, we first
use NEM to obtain an initial energy network and then apply training with the bootstrapped estimator.
We then aim to use bootstrapping only when the energy network is significantly better at time s
than at time t. We quantify this by evaluating the NEM losses at times t and s given a clean data
point x0. In particular, we could compare l̃s(xs) = LNEM(xs, s) and l̃t(xt) = LNEM(xt, t), where
xs ∼ N (x0, σ

2
sI) and xt ∼ N (x0, σ

2
t I). However, the variance of training targets increases with

time, meaning that a direct comparison of these losses is not reliable. To avoid this, we normalize
these losses according to the noise schedule variance and compare instead ls(xs) = LNEM(xs, s)/σ

2
s

and lt(xt) = LNEM(xt, t)/σ
2
t . We then adopt a rejection training scheme according to the ratio of

these normalized NEM losses:

(a) given s, t and x0, we first noise x0 to s and t respectively, and compute the normalized
losses defined above, i.e. ls(xs) and lt(xt);

(b) these losses indicate how well the energy network fits the noised energies at different times;
we then compute α = min(1, ls(xs)/lt(xt));

(c) with probability α, we accept targeting an energy estimator at t bootstrapped from s and
otherwise, we stick to targeting the original MC energy estimator.

We provide a full description of the inner-loop of BNEM training in Algorithm 2.

4 RELATED WORKS

Boltzmann Generator. To learn a neural sampler for Boltzmann distribution, unlike data-driven tasks
where a sufficient amount of data is available, simply minimizing the reverse Kullback-Leibler (KL)
divergence, i.e.minθ DKL(µtarget∥qθ), can lead to mode-seeking behavior. Boltzmann Generator(Noé
et al., 2019) addresses this problem by minimizing the combination of forward and reverse KL
divergence.

PIS, DDS, and FAB. Inspired by the rapid development of deep generative models, e.g. diffusion
models (Song & Ermon, 2019; Ho et al., 2020), pseudo samples could be generated from an arbitrary
prior distribution. Then, we can train the neural samplers by matching these sample trajectories, as in
Path Integral Sampler (PIS)(Zhang & Chen, 2022) and Denoising Diffusion Sampler (DDS) (Vargas
et al., 2023). Midgley et al. (2023) further deploy a replay buffer for the trajectories while proposing
an α-divergence as the objective to avoid mode-seeking. However, these methods require simulation
during training, which still poses challenges for scaling up to higher dimensional tasks.

iDEM. To further boost scalability and mode-coverage, iDEM (Akhound-Sadegh et al., 2024) is
proposed to target an MC score estimator that estimates scores of noised data, enabling the usage
of the efficient diffusion sampling. iDEM is trained with a bi-level scheme: (1) a simulation-free
inner-loop that targets time-involved scores of buffer data; (2) an outer-loop that simulates the learned
diffusion sampler to generate more informative data in the buffer. It achieves previous state-of-the-art
performance on the tasks above.

iEFM. To regress xt directly, one can leverage Flow Matching Lipman et al. (2023). Woo & Ahn
(2024) proposes iEFM, a variant of iDEM that targets the MC estimated vector fields in a Flow
Matching fashion, which is empirically found to outperform iDEM in GMM and DW-4. In fact,
we found that iEFM and iDEM can be linked through Tweedie’s formula (Efron, 2011) shown in
Appendix H with supplementary experiments provided in Appendix J.8.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: Neural sampler performance comparison for 4 different energy functions. We measured the
performance using data Wasserstein-2 distance (x-W2), Energy Wasserstein-2 distance (E-W2), and
Total Variation (TV). * indicates divergent training. Each sampler is evaluated with 3 random seeds
and we report the mean ± standard deviation for each metric. † indicates a large standard deviation
of metric (> 20%) and we report the best value.

Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ x-W2 E-W2 TV x-W2 E-W2 TV x-W2 E-W2 TV x-W2 E-W2 TV
DDS 15.04±2.97 305.13±186.06 0.96±0.01 0.82±0.21 558.79±787.92 0.38±0.14 * * *
PIS 6.58±1.68 79.86±7.79 0.95±0.01 * * * * * * * *
FAB 9.08±1.41 47.60±7.24 0.79±0.07 0.62±0.02 112.70±20.33 0.38±0.02 * * * * * *
iDEM 8.21±5.43 60.49±70.12 0.82±0.03 0.50±0.03 2.80±1.72 0.16±0.01 0.87±0.00 6770† 0.06±0.01 2.06±0.04 17651† 0.16±0.02

NEM (ours) 5.28±0.89 44.56±39.56 0.91±0.02 0.48±0.02 0.85±0.52 0.14±0.01 0.87±0.01 5.01±3.14 0.03±0.00 1.90±0.01 118.58±106.63 0.10±0.02

BNEM (ours) 3.66±0.30 1.87±1.00 0.79±0.04 0.49±0.02 0.38±0.09 0.14±0.01 0.86±0.00 1.02±0.69 0.03±0.00 1.88±0.01 119.46±77.92 0.08±0.01

(a) Ground Truth (b) DDS (c) PIS (d) FAB (e) iDEM (f) NEM (ours) (g) BNEM (ours)

Figure 2: Sampled points from samplers applied to GMM-40 potentials, with the ground truth represented by
contour lines.

5 EXPERIMENTS

We evaluate our methods and baseline models on 4 potentials. A complete description of all energy
functions, metrics, and experiment setups is in Appendix I. Supplementary experiments can be found
in Appendix J. We provide an anonymous link to our code for implementation reference1.

Datasets. We evaluate all neural samplers on 4 different datasets: a GMM with 40 modes (d = 2),
a 4-particle double-well (DW-4) potential (d = 8), a 13-particle Lennard-Jones (LJ-13) potential
(d = 39) and a 55-particle Lennard-Jones (LJ-55) potential (d = 165). For LJ-n potentials, the energy
can be extreme when particles are too close to each other, creating problems for estimating noised
energies. To overcome this issue, we smooth the Lennard-Jones potential through the cubic spline
interpolation, according to Moore et al. (2024).

Baseline. We compare NEM and BNEM to following recent works: Denoising Diffusion Sampler
(DDS)(Vargas et al., 2023), Path Integral Sampler (PIS)(Zhang & Chen, 2022), Flow Annealed
Bootstrap (FAB)(Midgley et al., 2023) and Iterated Denoising Energy Matching (iDEM)(Akhound-
Sadegh et al., 2024). Due to the high complexity of DDS and PIS training due to their simulation-based
nature, we limit their integration step when sampling to 100. Also, as iDEM (Akhound-Sadegh et al.,
2024) shows excellent performance of GMM and DW-4, we consider showing its robustness together
with NEM and BNEM by limiting both the integration step and number of MC samples to 100. For
complex tasks, i.e. LJ-13 and LJ-55, we stick to using 1000 steps for reverse SDE integration and
1000 MC samples in the estimators. For BNEM, we set β = 0.1 for all tasks. We train all samplers
using an NVIDIA-A100 GPU.

Architecture. We use the same network architecture (MLP for GMM and EGNN for particle systems,
i.e. DW-4, LJ-13, and LJ-55) in DDS, PIS, iDEM, NEM and BNEM. To ensure a similar number of
parameters for each sampler, if the score network is parameterized by sθ(x, t) = fθ(x, t), the energy
network is set to be Eθ(x, t) = 1⊤fθ(x, t) + c with a learnable scalar c. Furthermore, this setting
ensures SE(3) invariance for the energy network. However, FAB requires an invertible architecture.
For a fair comparison, we replace the neural network architecture in FAB with a continuous flow
matching, to ensure a similar number of parameters for each sampler.

Metrics. We use data 2-Wasserstein distance (x-W2), energy 2-Wasserstein distance (E−W2), and
Total Variation (TV) as metrics. TV is computed from data in GMM; For equivariant systems, i.e.
DW-4, LJ-13, and LJ-55, TV is based on the interatomic distance. To computeW2 and TV, we use

1https://anonymous.4open.science/r/nem-D664/README.md

8

https://anonymous.4open.science/r/nem-D664/README.md

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) DW-4 (b) LJ-13 (c) LJ-55

Figure 3: Histogram for energies of samples generated by each sampler.

(a) DW-4 (b) LJ-13 (c) LJ-55

Figure 4: Histogram for interatomic distance of samples generated by each sampler.

pre-generated samples as datasets: (a) For GMM, we sample from the ground truth distribution; (b)
For DW-4, LJ-13 and LJ-55, we use samples from Klein et al. (2023b).

5.1 MAIN RESULTS

We report x-W2, E-W2, and TV for all tasks in Table 1. The table demonstrates that by targeting
less noisy objectives, NEM outperforms DEM on most metrics, particularly for complex tasks such
as LJ-13 and LJ-55. Figure 2 visualizes the generated samples from each sampler in the GMM
benchmark. When the compute budget is constrained—by reducing neural network size for DDS, PIS,
and FAB, and limiting the number of integration steps and MC samples to 100 for all baselines—none
of them achieve high-quality samples with sufficient mode coverage. In particular, iDEM produces
samples that are not concentrated around the modes in this setting. Conversely, NEM generates
samples with far fewer outliers, focusing more on the modes and achieving the best performance on
all metrics. BNEM can further improve on top of NEM, generating data that are most similar to the
ground truth ones.

For the equivariant tasks, i.e. DW-4, LJ-13, and LJ-55, we compute the energies and interatomic
distances for each generated sample. Empirically, we found that smoothing the energy-distance
function by a cubic spline interpolation (Moore et al., 2024) to avoid extreme values (i.e. when the
particles are too close) is a key step when working with the Lennard Jones potential. Furthermore,
this smoothing technique can be applied in a wide range of many-particle systems (Pappu et al., 1998).
Therefore, NEM and BNEM can be applied without significant modeling challenges. We also provide
an ablation study on applying this energy-smoothing technique to score-based iDEM. The results in
Table 4 suggest that it could help to improve the performance of iDEM but NEM still outperforms it.

Figures 3 and 4, show the histograms of the energies and interatomic distances, respectively. It
shows that both NEM and BNEM closely match the ground truth densities, outperforming all other
baselines. Moreover, for the most complex task, LJ-55, NEM demonstrates greater stability during
training, generating more low-energy samples, unlike iDEM, which is more susceptible to instability
and variance from different random seeds.

For E-W2, it is susceptible to outliers with high energy, especially in complex tasks like LJ-13 and
LJ-55, where an outlier that corresponds to a pair of particles that are close to each other can result in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 5: Barplots comparing DEM, NEM, and BNEM evaluations with 1000 vs. 100 integration
steps and MC samples on the LJ-13 benchmark.

an extremely large value of this metric. We find that for LJ-n tasks, NEM and BNEM tend to generate
samples with low energies and result in low E-W2, while iDEM can produce high energy outliers and
therefore corresponds to the extremely high values of this metric. We also notice that for LJ-55, the
mean value of E-W2 of BNEM is similar to NEM, while its results have smaller variance indicating a
better result. Overall, NEM consistently outperforms iDEM, while BNEM can further improve NEM
and achieve state-of-the-art performance in all tasks.

5.2 ROBUSTNESS OF DEM, NEM, AND BNEM

Table 1 partially shows the better robustness of NEM and BNEM in terms of fewer integration steps
and MC samples, compared with iDEM and other baselines. We further explore the robustness
in a more complex benchmark, LJ-13, to demonstrate the advantage of our energy-based models,
i.e. NEM and BNEM. Figure 5 visualizes the difference of metrics when reducing the integration
steps and number of MC samples from 1000 to 100. A complete comparison between iDEM, NEM,
and BNEM under different computational budgets is provided in Table 5 (Appendix J). It shows
that when limiting the computing budgets, iDEM can degrade significantly in GMM and DW-4
potentials, while NEM is less affected. In LJ-13 potential, both iDEM and NEM can degrade, while
NEM-100 is still better than DEM-100 and even better than DEM-1000 in E-W2 and TV. Furthermore,
BNEM can achieve better performance. BNEM-100 is less affected and matches the performance
of iDEM-1000 in GMM and DW-4, and even outperforms iDEM-1000 in the more complex LJ-13
potential, showcasing its capability.

6 CONCLUSION

In this work, we propose NEM and BNEM, neural samplers for Boltzmann distribution and equi-
librium systems like many-body systems. NEM uses a novel Monte Carlo energy estimator with
reduced bias and variance. BNEM builds on NEM, employing an energy estimator bootstrapped
from lower noise-level data, theoretically trading bias for variance. Empirically, BNEM achieves
state-of-the-art results on 4 different benchmarks, GMM, DW-4, LJ-13, and LJ-55.

Limitations and future work. Even though NEM can outperform DEM with fewer integration
steps, the requirement of differentiating the neural network w.r.t. the input poses a memory issue for
high-dimensional tasks, and therefore would require further improvement for scalability in terms of
memory in the future; Secondly, though BNEM demonstrates its potential to achieve improvement on
top of NEM, its training process is yet not stable enough. Therefore, improving its training stability
is of interest in the future; Besides, the cubic-spline interpolation technique is applied for the LJ-n
potentials, and therefore a more general learning-based technique that can fix the extreme energy
issue, such as contrastive learning, is more desired; Furthermore, the well-learned noised energies
allow us more possible ways to improve generation quality beyond normal denoising diffusion
approach, such as integrating Metropolis-Hastings correction inside the denoising process to generate
more accurate samples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay
Malkin, and Alexander Tong. Iterated denoising energy matching for sampling from boltzmann
densities, 2024. URL .

David A Case, H Metin Aktulga, Kellon Belfon, Ido Ben-Shalom, Scott R Brozell, David S Cerutti,
Thomas E Cheatham III, Vinícius Wilian D Cruzeiro, Tom A Darden, Robert E Duke, et al. Amber
2021. University of California, San Francisco, 2021.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association,
106(496):1602–1614, 2011.

RÃ©mi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, AurÃ©lie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, LÃ©o
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine
Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong,
and Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):
1–8, 2021. URL .

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 59886–59910. Curran Associates, Inc., 2023a. URL .

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching, 2023b. URL .

Jonas Köhler, Leon Klein, and Frank Noe. Equivariant flows: Exact likelihood generative learning for
symmetric densities. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
5361–5370. PMLR, 13–18 Jul 2020. URL .

R Komanduri, N Chandrasekaran, and LM Raff. Md simulation of nanometric cutting of single
crystal aluminum–effect of crystal orientation and direction of cutting. Wear, 242(1-2):60–88,
2000.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL .

Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, and José Miguel
Hernández-Lobato. Flow annealed importance sampling bootstrap, 2023. URL .

J. Harry Moore, Daniel J. Cole, and Gabor Csanyi. Computing hydration free energies of small
molecules with first principles accuracy, 2024. URL .

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators – sampling equilibrium
states of many-body systems with deep learning, 2019. URL .

Art B. Owen. Monte Carlo theory, methods and examples. , 2013.

Art B. Owen. Practical Quasi-Monte Carlo Integration. , 2023.

Rohit V Pappu, Reece K Hart, and Jay W Ponder. Analysis and application of potential energy
smoothing and search methods for global optimization. The Journal of Physical Chemistry B, 102
(48):9725–9742, 1998.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Paweł Śledź and Amedeo Caflisch. Protein structure-based drug design: from docking to molecular
dynamics. Current opinion in structural biology, 48:93–102, 2018.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. URL .

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers, 2023. URL .

Dongyeop Woo and Sungsoo Ahn. Iterated energy-based flow matching for sampling from boltzmann
densities, 2024. URL .

Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for sampling,
2022. URL .

Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang, Jianwei
Zhu, Yaosen Min, et al. Predicting equilibrium distributions for molecular systems with deep
learning. Nature Machine Intelligence, pp. 1–10, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

APPENDIX

TABLE OF CONTENTS

1 Introduction 1

2 Preliminary 2

3 Methods 3

3.1 Overview of NEM framework . 3

3.2 denoising diffusion-based Boltzmann sampler . 3

3.3 Energy-based learning VS Score-based learning 4

3.4 Improvement with bootstrapped energy estimation 5

4 Related works 7

5 Experiments 8

5.1 Main Results . 9

5.2 Robustness of DEM, NEM, and BNEM . 10

6 Conclusion 10

A Proof of Proposition 1 14

B Proof of Proposition 2 15

C Ideal Bootstrap Estimator ≡ Recursive Estimator 16

D Proof of Proposition 3 17

D.1 Bootstrap(1) estimator . 18

D.2 Bootstrap(n) estimator . 19

E Incorporating Symmetry Using NEM 20

F Generalizing NEM 21

F.1 NEM for General SDEs . 21

F.2 MC Energy Estimator as an Importance-Weighted Estimator 22

G Memory-Efficient NEM 23

H TweeDEM: a middle point between Denoising Energy Matching and Energy Flow
Matching through Tweedie’s formula 23

I Experimental Details 24

I.1 Energy functions . 24

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

I.2 Evaluation Metrics . 25

I.3 Experiment Settings . 25

J Supplementary Experients 26

J.1 Main Results . 26

J.2 Comparing the Robustness of Energy-Matching and Score-Matching 27

J.3 Empirical Analysis of the Variance of EK and SK 29

J.4 Empirical Analysis of the Bias of Bootstrapping 29

J.5 Complexity Analysis . 31

J.6 Performance Gain Under the Same Computational Budget 32

J.7 Experiments for Memory-Efficient NEM . 32

J.8 Experiments for TweeDEM . 32

A PROOF OF PROPOSITION 1

Proposition 1 If exp(−E(x(i)
0|t)) is sub-Gaussian, then there exists a constant c̃(xt) such that with

probability 1− δ over x(i)
0|t ∼ N (xt, σ

2
t), we have

∥EK(xt, t)− Et(xt)∥ ≤
c̃(xt)

√
log (1/δ)√
K

(19)

with c(xt)/c̃(xt) = 2(1 + ∥∇Et(xt)∥), where

∥SK(xt, t)− St(xt)∥ ≤
c(xt)

√
log (1/δ)√
K

(20)

Proof. We first introduce the error bound of the MC score estimator SK , where SK = ∇EK ,
proposed by Akhound-Sadegh et al. (2024) as follows

∥SK(xt, t)− S(xt, t)∥ ≤
2C
√

log(2δ)(1 + ∥∇Et(xt)∥) exp(Et(xt))
√
K

(21)

which assumes that exp(−E(x(i)
0|t)) is sub-Gaussian. Let’s define the following variables

mt(xt) = exp(−Et(xt)) (22)
vst(xt) = VarN (xt,(σ2

t−σ2
s)I)

[exp(−E(x))] (23)

By the sub-Gaussianess assumption, it’s easy to show that the constant term C in Equation 21 is
C =

√
2v0t(xt). Notice that EK is a logarithm of an unbiased estimator . By the sub-Gaussian

assumption, one can derive that EK is also sub-Gaussian. Furthermore, it’s mean and variance can
be derived by employing a first-order Taylor expansion:

EEK(xt, t) ≈ Et(xt) +
v0t(xt)

2m2
t (xt)K

(24)

Var[EK(xt, t)] ≈
v0t(xt)

m2
t (xt)K

(25)

And one can obtain its concentration inequality by incorporating the sub-Gaussianess

∥EK(xt, t)− E[EK(xt, t)]∥ ≤

√
2

v0t(xt)

m2
0t(xt)K

log
2

δ
(26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

By using the above Inequality 26 and the triangle inequality
∥EK(xt, t)− Et(xt)∥ ≤ ∥ logEK(xt, t)− E[EK(xt, t)]∥+ ∥E[EK(xt, t)]− Et(xt)∥ (27)

= ∥ logEK(xt, t)− E[EK(xt, t)]∥+
v0t(xt)

2m2
t (xt)K

(28)

≤

√
2

v0t(xt)

m2
t (xt)K

log
2

δ
+

v0t(xt)

2m2
t (xt)K

(29)

=
C
√
log 2

δ exp(Et(xt))
√
K

+O(1/K) (30)

=
c(xt)

2(1 + ∥∇Et(xt)∥)

√
log 1

δ√
K

(31)

Therefore, we have c(xt) = 2(1 + ∥∇Et(xt)∥)c̃(xt). It demonstrates a less biased estimator, which,
what’s more, doesn’t require a sub-Gaussianess assumption over ∥∇E(x(i)

0|t)∥. □

B PROOF OF PROPOSITION 2

Proposition 2 If exp(−E(x(i)
0|t)) is sub-Gaussian and ∥∇ exp(−E(x(i)

0|t))∥ is bounded, the total
variance of the MC score estimator SK is consistently larger than that of the MC energy estimator
EK in low-energy regions, with

tr (Cov[SK(xt, t)])

Var[EK(xt, t)]
= 4(1 + ∥∇Et(xt)∥)2 (32)

In high-energy regions, C[EK(xt, t)] < tr(Cov[SK(xt, t)]) holds when the system energy E(xt) is
positively related to at least one element of the score∇E(xt).

Proof. We split the proof into two parts: low-energy region and high-energy one. The proof in
the low-energy region requires only the aforementioned sub-Gaussianess and bounded assumptions,
while the one in the high-energy region requires an additional constraint which will be clarified later.
Review that SK can be expressed as an importance-weighted estimator as follows:

SK(xt, t) =

1
K

∑K
i=1∇ exp(−E(x(i)

0|t))

1
K

∑K
i=1 exp(−E(x

(i)
0|t))

(33)

Let ∥∇ exp(−E(x(i)
0|t))∥ ≤ M , where M > 0. Since a bounded variable is sub-Gaussian, this

assumption resembles a sub-Gaussianess assumption of ∥∇ exp(−E(x(i)
0|t))∥. Then each element of

∥∇ exp(−E(x(i)
0|t))∥, i.e. ∇ exp(−E(x(i)

0|t))[j], is bounded by M . And therefore∇ exp(−E(x(i)
0|t))[j]

are sub-Gaussian.

In low-energy regions. exp(−E(x)) is concentrated away from 0 as E(x) is small. Then, there
exists a constant c such that exp(−E(x(i)

0|t)) ≥ c > 0 and thus for each element j = 1, .., d:

∥SK(xt, t)[j]∥ =

∥∥∥∥∥∥
1
K

∑K
i=1∇ exp(−E(x(i)

0|t))[j]

1
K

∑K
i=1 exp(−E(x

(i)
0|t))

∥∥∥∥∥∥ (34)

≤
∥
∑K

i=1∇ exp(−E(x(i)
0|t))[j]∥

Kc
≤M/c (35)

therefore, the jth element of SK , i.e.SK [j], is bounded by M/c, suggesting it is sub-Gaussian. While
Inequality 21 can be expressed as√√√√ d∑

j=1

(SK(xt, t)[j]− St(xt)[j])2 ≤
2
√

2v0t(xt) log(
2
δ)(1 + ∥∇Et(xt)∥)

mt(xt)
√
K

(36)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

We can roughly derive a bound elementwisely

|SK(xt, t)[j]− St(xt)[j]| ≤
2
√

2v0t(xt) log(
2
δ)(1 + ∥∇Et(xt)∥)

mt(xt)
√
Kd

(37)

which suggests that we can approximate the variance of SK(xt, t)[j] by leveraging its sub-Gaussianess

Var(SK(xt, t)[j]) ≈
4v0t(xt)(1 + ∥∇Et(xt)∥)2

m2
t (xt)Kd

(38)

Therefore, according to Equation 25 we can derive that

tr(Cov[SK(xt, t)]) =

d∑
j=1

Var[SK(xt, t)[j]] (39)

=
4v0t(xt)(1 + ∥∇Et(xt)∥)2

m2
t (xt)K

(40)

= 4(1 + ∥∇Et(xt)∥)2Var[EK(xt, t)] (41)

In high-energy region. we assume that there exists a direction with a large norm pointing to low
energy regions, i.e. ∃j such that E(x) are positively related to ∇E(x)[j]. According to Section 9.2 in
Owen (2023), the asymptotic variance of a self-normalized importance sampling estimator is given
by:

µ = Eq[f(X)] (42)

µ̃q =

∑K
i=1 wifi∑K
i=1 wi

(43)

Var(µ̃q) ≈
1

K
Eq[w(X)]−2Eq[w(X)2(f(X)− µ)2] (44)

By substituting µ̃q = SK(xt, t)[j], f(X) = −∇E(X)[j], w(X) = exp(−E(X)), q = N(x;xt, σ
2
t),

Eq[w(X)] = mt(xt) and Eq[w
2(X)] = v0t(xt) + m2

t (xt), as well as using w(X) and f(X) are
positive related, we have:

Var[SK(xt, t)[j]] ≥
1

K
Eq[w(X)]−2Eq[w

2(X)]Eq[(f(X)− µ)2] (45)

=
v0t(xt) +m2

t (xt)

m2
t (xt)K

Varq[∇E(x)[j]] (46)

(47)

Therefore, if we further have a large variance over the system score at this region, i.e.
Varq[∇E(x)[j]] > 1, then we have

Var[SK(xt, t)[j]] >
v0t(xt)

m2
t (xt)K

= Var[EK(xt, t)] (48)

and thus tr(Cov[SK(xt, t])) > Var[EK(xt, t)] holds. □

C IDEAL BOOTSTRAP ESTIMATOR ≡ RECURSIVE ESTIMATOR

In this section, we will show that an ideal bootstrap estimator can polynomially reduce both the
variance and bias w.r.t. number of MC samples K. Let a local bootstrapping trajectory u→ s→ t,
with u < s < t. Suppose we have access to Eu. Let Eθ̃(xs, s) is learned from targetting an
estimator bootstrapped from Eu to approximate Es. Suppose Eθ̃(xs, s) is ideal, i.e. Eθ̃(xs, s) ≡
EK(xs, s, u; Eu). The bootstrap energy estimator (Eq.15) at t from s can be written as follows:

EK(xt, t, s; θ̃) = − log
1

K

K∑
i=1

exp(−Eθ̃(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (49)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

By plugging Eθ̃(x
(i)
s|t, s) = EK(x

(i)
s|t, s, u; Eu) into the above equation, we have

EK(xt, t, s; θ̃) = − log
1

K

K∑
i=1

exp(−EK(x
(i)
s|t, s, u; Eu)) (50)

= − log
1

K

K∑
i=1

1

K

K∑
j=1

exp(−Eu(x(ij)
u|s)), x

(ij)
u|s ∼ N (x;x(i)

s , (σ2
s − σ2

u)I) (51)

where x
(ij)
u|s ∼ N (x;x

(i)
s , (σ2

s − σ2
u)I). Notice that x(i)

s|t = xt +
√

σ2
t − σ2

sϵ
(i)
s , x(ij)

u|s = x
(i)
s +√

σ2
s − σ2

uϵ
(ij)
u , and ϵ

(j)
s and ϵ

(ij)
u are independent, we can combine these Gaussian-noise injection:

EK(xt, t, s; θ̃) = − log
1

K2

K∑
i=1

K∑
j=1

exp(−Eu(x(ij)
u|t)) = EK2(xt, t, u; Eu) (52)

where x
(ij)
u|t ∼ N (x;xt, (σ

2
t − σ2

u)I). Therefore, the ideal bootstrapping at t from s over this local
trajectory (u→ s→ t) is equivalent to using quadratically more samples compared with estimating
t directly from u. With initial condition E0 = E and σ0 = 0, we can simply show that: Given a
bootstrap trajectory {si}ni=0 where s0 = 0, sn = 1. For any t ∈ [si, si+1] and any s ∈ [si−1, si],
with i = 0, ..., n− 1, the ideal bootstrap estimator is equivalent to

EK(xt, t, s; θ̃) ≡ EK(i+1)(xt, t) (53)

which polynomially reduces the variance and bias of the estimator. In other words, the ideal bootstrap
estimator is equivalent to recursively approximating Es with EK(xs, s) utill the initial condition E .

For simplification in Appendix D, we term the ideal bootstrap estimator with bootstrapping n times
as the Sequential(n) Estimator, ESeq(n), i.e.

E
Seq(n)
K (xt, t) : = EKn+1(xt, t) (54)

D PROOF OF PROPOSITION 3

Proposition 3 Given a bootstrap trajectory {si}ni=0 such that σ2
si − σ2

si−1
≤ κ, where s0 = 0,

sn = 1 and κ > 0 is a small constant. Suppose Eθ is incrementally optimized from t ∈ [0, 1] as
follows: if t ∈ [si, si+1], Eθ(xt, t) targets an energy estimator bootstrapped from ∀s ∈ [si−1, si]
using Eq. 15. For ∀0 ≤ i ≤ n and ∀s ∈ [si−1, si], the variance of the bootstrap energy estimator is
given by

Var[EK(xt, t, s; θ)] =
vst(xt)

v0t(xt)
Var[EK(xt, t)] (55)

and the bias of EK(xt, t, s; θ) is given by

Bias[EK(xt, t, s; θ)] =
v0t(xt)

2m2
t (xt)Ki+1

+

i∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

. (56)

where mz(xz) = exp(−Ez(xz)) and vyz(xz) = VarN (x;xz,(σ2
z−σ2

y)I)
[exp(−Ey(x))] for ∀0 ≤ y <

z ≤ 1.

Proof. The variance of EK(xt, t, s; θ) can be simply derived by leveraging the variance of a sub-
Gaussian random variable similar to Equation 25. While the entire proof for bias of EK(xt, t, s; θ) is
organized as follows:

1. we first show the bias of Bootstrap(1) estimator, which is bootstrapped from the system
energy

2. we then show the bias of Bootstrap(n) estimator, which is bootstrapped from a lower level
noise convolved energy recursively, by induction.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

D.1 BOOTSTRAP(1) ESTIMATOR

The Sequential estimator and Bootstrap(1) estimator are defined by:

E
Seq(1)
K (xt, t) : = − log

1

K

K∑
i=1

exp(−EK(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (57)

= − log
1

K2

K∑
i=1

K∑
j=1

exp(−E(x(ij)
0|t)), x

(ij)
0|t ∼ N (x;xt, σ

2
t I) (58)

E
B(1)
K (xt, t, s; θ) : = − log

1

K

K∑
i=1

exp(−Eθ(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (59)

The mean and variance of a Sequential estimator can be derived by considering it as the MC estimator
with K2 samples:

E[ESeq(1)
K (xt, t)] = Et(xt) +

v0t(xt)

2m2
0t(xt)K2

and Var(ESeq(1)
K (xt, t)) =

v0t(xt)

m2
0t(xt)K2

(60)

While an optimal network obtained by targeting the original MC energy estimator 9 at s is 2 :

Eθ∗(xs, s) = E[EK(xs, s)] = − logms(xs) +
v0s(xs)

2m2
s(xs)K

(61)

Then the optimal Bootstrap(1) estimator can be expressed as:

E
B(1)
K (xt, t, s; θ

∗) = − log
1

K

K∑
i=1

exp

−
− logms(x

(i)
s|t) +

v0s(x
(i)
s|t)

2m2
s(x

(i)
s|t)K

 (62)

Before linking the Bootstrap estimator and the Sequential one, we provide the following approxima-
tion which is useful. Let a, b two random variables and {ai}Ki=1, {bi}Ki=1 are corresponding samples.
Assume that {bi}Ki=1 are close to 0 and concentrated at mb, while {ai}Ki=1 are concentrated at ma,
then

log
1

K

K∑
i=1

exp(−(ai + bi)) = log
1

K

{
K∑
i=1

exp(−ai)

[∑K
i=1 exp(−(ai + bi))∑K

i=1 exp(−ai)

]}
(63)

= log
1

K

K∑
i=1

exp(−ai) + log

∑K
i=1 exp(−(ai + bi))∑K

i=1 exp(−ai)
(64)

≈ log
1

K

K∑
i=1

exp(−ai) + log

∑K
i=1 exp(−ai)(1− bi)∑K

i=1 exp(−ai)
(65)

= log
1

K

K∑
i=1

exp(−ai) + log

(
1−

∑K
i=1 exp(−ai)bi∑K
i=1 exp(−ai)

)
(66)

≈ log
1

K

K∑
i=1

exp(−ai)−
∑K

i=1 exp(−ai)bi∑K
i=1 exp(−ai)

(67)

≈ log
1

K

K∑
i=1

exp(−ai)−mb (68)

where Approximation applies a first order Taylor expansion of ex ≈ 1 + x around x = 0 since
{bi}Ki=1 are close to 0; while Approximation uses log(1+x) ≈ x under the same assumption. Notice

2We consider minimizing the L2-norm, i.e. θ∗ = argminθ Ex0,t[∥Eθ(xt, t) − EK(xt, t)∥2]. Since the
target, EK , is noisy, the optimal outputs are given by the expectation, i.e. E∗

θ = E[EK].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

that when K is large and σ2
t − σ2

s ≤ κ is small , {
v0s(x

(i)

s|t)

2m2
s(x

(i)

s|t)K
}Ki=1 are close to 0 and concentrated at

v0s(xt)
2m2

s(xt)K
. Therefore, by plugging them into Equation 68, Equation 62 can be approximated by

E
B(1)
K (xt, t, s; θ

∗) ≈ − log
1

K

K∑
i=1

ms(x
(i)
s|t) +

v0s(xt)

2m2
s(xt)K

(69)

When K is large and σ2
s is small, the bias and variance of EK(x

(i)
s|t, s) are small, then we have

− log
1

K

K∑
i=1

ms(x
(i)
s|t) ≈ − log

1

K

K∑
i=1

EK(x
(i)
s|t, s) = E

Seq(1)
K (xt, t) (70)

Therefore, the optimal Bootstrap estimator can be approximated as follows:

E
B(1)
K (xt, t, s; θ

∗) ≈ E
Seq(1)
K (xt, t) +

v0s(xt)

2m2
s(xt)K

(71)

where its mean and variance depend on those of the Sequential estimator (60):

E[EB(1)
K (xt, t, s; θ

∗)] = Et(xt) +
v0t(xt)

2m2
t (xt)K2

+
v0s(xt)

2m2
s(xt)K

(72)

Var[EB(1)
K (xt, t, s; θ

∗)] =
v0t(xt)

m2
t (xt)K2

(73)

D.2 BOOTSTRAP(n) ESTIMATOR

Given a bootstrap trajectory {si}ni=1 where s0 = 0 and sn = s, and Eθ is well learned at [0, s]. Let
the energy network be optimal for u ≤ sn by learning a sequence of Bootstrap(i) energy estimators
(i ≤ n). Then the optimal value of Eθ(xs, s) is given by E[EB(n−1)

K (xs, s)]. We are going to show
the variance of a Bootstrap(n) estimator by induction. Suppose we have:

Eθ∗(xs, s) = Es(xs) +

n∑
j=1

v0sj (xs)

2m2
sj (xs)Kj

(74)

= E[ESeq(n−1)
K (xs, s)] +

n−1∑
j=1

v0sj (xs)

2m2
sj (xs)Kj

(75)

Then for any t ∈ (s, 1], the learning target of Eθ(xt, t) is bootstrapped from sn = s,

E
B(n)
K (xt, t) = − log

1

K

K∑
i=1

exp(−Eθ∗(x
(i)
s|t, s)), x

(i)
s|t ∼ N (x;xt, (σ

2
t − σ2

s)I) (76)

= − log
1

K

K∑
i=1

exp

−E[ESeq(n−1)
K (x

(i)
s|t, s)]−

n−1∑
j=1

v0sj (x
(i)
s|t)

2m2
sj (x

(i)
s|t)K

j

 (77)

Assume that σ2
t − σ2

s is small and K is large, then we can apply Approximation 68 and have

E
B(n)
K (xt, t) ≈ − log

1

K

K∑
i=1

exp
(
−E[ESeq(n−1)

K (x
(i)
s|t, s)]

)
+

n−1∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(78)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

The first term in the RHS of the above equation can be further simplified as 3 :

− log
1

K

K∑
i=1

exp
(
−E[ESeq(n−1)

K (x
(i)
s|t, s)]

)
(79)

≈E

[
− log

1

K

K∑
i=1

exp
(
−ESeq(n−1)

K (x
(i)
s|t, s)

)]
+

K∑
i=1

exp
(
−E[ESeq(n−1)

K (x
(i)
s|t, s)]

)
Var[E

Seq(n−1)
K (x

(i)
s|t, s)]

2
∑K

j=1 exp
(
−E[ESeq(n−1)

K (x
(i)
s|t, s)]

)
(80)

≈E

[
− log

1

K

K∑
i=1

exp
(
−ESeq(n−1)

K (x
(i)
s|t, s)

)]
+

Var[E
Seq(n−1)
K (x

(i)
s|t, s)]

2
(81)

=Eϵ(j)

− log
1

Kn+1

K∑
i=1

Kn∑
j=1

exp
(
−E
(
x
(i)
s|t + ϵ(j)

))+
v0s(xt)

2m2
s(xt)Kn

(82)

where ϵj
i.i.d.
N (0, I). Therefore, Eq. 78 can be simplified as

E
B(n)
K (xt, t) = Eϵ(j)

− log
1

Kn+1

K∑
i=1

Kn∑
j=1

exp
(
−E
(
x
(i)
s|t + ϵ(j)

))+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(83)

Taking the expectation over Eq. 83 yields an expectation of the Sequential(n) estimator on its RHS,
we therefore complete the proof by induction:

E
[
E

B(n)
K (xt, t)

]
= E

ϵ(j),x
(i)

s|t

− log
1

Kn+1

K∑
i=1

Kn∑
j=1

exp
(
−E
(
x
(i)
s|t + ϵ(j)

))+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(84)

= E
[
E

Seq(n)
K (xt, t)

]
+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(85)

= Et(xt) +
v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(86)

which suggests that the accumulated bias of a Bootstrap(n) estimator is given by

Bias[E
B(n)
K (xt, t)] =

v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(87)

□

E INCORPORATING SYMMETRY USING NEM

We consider applying NEM and BNEM in physical systems with symmetry constraints like n-body
system. We prove that our MC energy estimator EK is G-invariant under certain conditions, given in
the following Proposition.

Proposition 4 Let G be the product group SE(3)× Sn ↪→ O(3n) and p0 be a G-invariant density in
Rd. Then the Monte Carlo energy estimator of EK(xt, t) is G-invariant if the sampling distribution
x0|t ∼ N (x0|t;xt, σ

2
t) is G-invariant, i.e.,

N (x0|t; g ◦ xt, σ
2
t) = N (g−1x0|t;xt, σ

2
t).

3This simplication leverages the fact that, if Xi are i.i.d. bounded sub-Gaussian random variables, then
log

∑
i exp(−EXi) can be approximated by E[log

∑
i exp(−Xi)]− 1

2

∑
i
exp(−EXi)Var(Xi)∑

j exp(−EXj)
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Proof. Since p0 is G-invariant, then E is G-invariant as well. Let g ∈ G acts on x ∈ Rd where
g ◦ x = gx. Since x

(i)
0|t ∼ N (x0|t;xt, σ

2
t) is equivalent to g ◦ x(i)

0|t ∼ N (x0|t; g ◦ xt, σ
2
t). Then we

have

EK(g ◦ xt, t) = − log
1

K

K∑
i=1

exp(−E(g ◦ x(i)
0|t)) (88)

= − log
1

K

K∑
i=1

exp(−E(x(i)
0|t)) = EK(xt, t) (89)

x
(i)
(0|t) ∼ N (x0|t;xt, σ

2
t) (90)

Therefore, EK is invariant to G = SE(3)× Sn. □

Furthermore, EK(xt, t, s;ϕ) is obtained by applying a learned energy network, which is G-invariant,
to the analogous process and therefore is G-invariant as well.

F GENERALIZING NEM

This section generalizes NEM in two ways: we first generalize the SDE setting, by considering a
broader family of SDEs applied to sampling from Boltzmann distribution; then we generalize the
MC energy estimator by viewing it as an importance-weighted estimator.

F.1 NEM FOR GENERAL SDES

Diffusion models can be generalized to any SDEs as dxt = f(xt, t)dt+ g(t)dwt, where t ≥ 0 and
wt is a Brownian motion. Particularly, we consider f(x, t) := −α(t)x, i.e.

dxt = −α(t)xtdt+ g(t)dwt (91)

Then the marginal of the above SDE can be analytically derived as:

xt = β(t)x0 + β(t)

√∫ t

0

(g(s)β(s))2dsϵ, β(t) := e−
∫ t
0
α(s)ds (92)

where ϵ ∼ N (0, I). For example, when g(t) =
√

β̄(t) and α(t) = 1
2 β̄(t), where β̄(t) is a monotonic

function (e.g. linear) increasing from β̄min to β̄max, the above SDE resembles a Variance Preserving
(VP) process (Song et al., 2020). In DMs, VP can be a favor since it constrains the magnitude
of noisy data across t; while a VE process doesn’t, and the magnitude of data can explode as the
noise explodes. Therefore, we aim to discover whether any SDEs rather than VE can be better by
generalizing NEM and DEM to general SDEs.

In this work, we provide a solution for general SDEs (91) rather than a VE SDE. For simplification,
we exchangeably use β(t) and βt. Given a SDE as Equation 91 for any integrable functions α and g,
we can first derive its marginal as Equation 92, which can be expressed as:

β−1
t xt = x0 +

√∫ t

0

(g(s)β(s))2dsϵ (93)

Therefore, by defining yt = β−1
t xt we have y0 = x0 and therefore:

yt = y0 +

√∫ t

0

(g(s)β(s))2dsϵ (94)

which resembles a VE SDE with noise schedule σ̃2(t) =
∫ t

0
(g(s)β(s))2ds. We can also derive this

by changing variables:

dyt = (β−1(t))′xtdt+ β−1(t)dxt (95)

= β−1(t)α(t)xtdt+ β−1(t)(−α(t)xtdt+ g(t)dwt) (96)

= β−1(t)g(t)dwt (97)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

which also leads to Equation 94. Let p̃t be the marginal distribution of yt and pt the marginal
distribution of xt, with y

(i)
0|t ∼ N (y; yt, σ̃

2
t I) we have

p̃t(yt) ∝
∫

exp(−E(y))N (yt; y, σ̃
2
t I)dy (98)

S̃t(yt) = ∇yt
log p̃t(yt) ≈ ∇yt

log

K∑
i=1

exp(−E(y(i)0|t)) (99)

Ẽt(yt) ≈ − log
1

K

K∑
i=1

exp(−E(y(i)0|t)) (100)

Therefore, we can learn scores and energies of yt simply by following DEM and NEM for VE SDEs.
Then for sampling, we can simulate the reverse SDE of yt and eventually, we have x0 = y0.

Instead, we can also learn energies and scores of xt. By changing the variable, we can have
pt(xt) = β−1

t p̃t(β
−1
t xt) = β−1

t p̃t(yt) (101)

St(xt) = β−1
t S̃t(β

−1
t xt) = β−1

t S̃t(yt) (102)
which provides us the energy and score estimator for xt:

Et(xt) ≈ − log β−1
t

1

K

K∑
i=1

exp(−E(x(i)
0|t)) (103)

St(xt) ≈ β−1
t ∇xt log

K∑
i=1

exp(−E(x(i)
0|t)) (104)

x
(i)
0|t ∼ N (x;β−1

t xt, σ̃
2(t)I) (105)

Typically, α is a non-negative function, resulting in β(t) decreasing from 1 and can be close to 0 when
t is large. Therefore, the above equations realize that even though both the energies and scores for a
general SDE can be estimated, the estimators are not reliable at large t since β−1

t can be extremely
large; while the SDE of yt (97) indicates that this equivalent VE SDE is scaled by β−1

t , resulting
that the variance of yt at large t can be extremely large and requires much more MC samples for a
reliable estimator. This issue can be a bottleneck of generalizing DEM, NEM, and BNEM to other
SDE settings, therefore developing more reliable estimators for both scores and energies is of interest
in future work.

F.2 MC ENERGY ESTIMATOR AS AN IMPORTANCE-WEIGHTED ESTIMATOR

As for any SDEs, we can convert the modeling task to a VE process by changing variables, we stick to
considering NEM with a VE process. Remember that the MC energy estimator aims to approximate
the noised energy given by Eq. 6, which can be rewritten as:

Et(xt) = − log

∫
exp(−E(x))N (xt;x, σ

2
t I)dx (106)

= − log

∫
exp(−E(x))N (xt;x, σ

2
t I)

q0|t(x|xt)
q0|t(x|xt)dx (107)

= − logEq0|t(x|xt)

[
exp(−E(x))N (xt;x, σ

2
t I)

q0|t(x|xt)

]
(108)

The part inside the logarithm of Eq. 108 suggests an Importance Sampling technique for approx-
imation, by using a proposal q0|t(x|xt). Notice that when choosing a proposal symmetric to the
perturbation kernal, i.e. q0|t(x|xt) = N (x;xt, σ

2
t), Eq. 108 resembles the MC energy estimator

we discussed in Section 3.3. Therefore, this formulation allows us to develop a better estimator by
carefully selecting the proposal q0|t(x|xt).

However, Owen (2013) shows that to minimize the variance of the IS estimator, the proposal q0|t(x|xt)
should be chosen roughly proportional to f(x)µtarget(x), where f(x) = exp(−E(x)) in our case.
Finding such a proposal is challenging in high-dimension space or with a multimodal µtarget. A
potential remedy can be leveraging Annealed Importance Sampling (AIS; Neal (2001)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

G MEMORY-EFFICIENT NEM

Differentiating the energy network to get denoising scores in (B)NEM raises additional computations
compared with iDEM, which usually twices the computation of forwarding a neural network and
can introduce memory overhead due to saving the computational graph. The former issue can be
simply solved by reducing the number of integration steps to a half. To solve the latter memory issue,
we propose a Memory-efficient NEM by revisiting the Tweedie’s formula (Efron, 2011). Given a
VE noising process, dxt = g(t)dwt, where wt is Brownian motion and σ2

t :=
∫ t

s=0
g(s)2ds, the

Tweedie’s formula can be written as:

∇ log pt(xt) =
E[x0|xt]− xt

σ2
t

(109)

E[x0|xt] =

∫
x0p(x0|xt)dx0 (110)

=

∫
x0

p(xt|x0)p0(x0)

pt(xt)
dx0 (111)

By revisiting Eq. 5, it’s noticable that the noised energy, Et (Eq. 6), shares the same partition
function as E , i.e.

∫
exp(−Et(x))dx =

∫
exp(−E(x))dx,∀t ∈ [0, 1]. Hence, Eq. 111 can be

simplified as follows, which further suggests a MC estimator for the denoising score with no require
of differentiation

E[x0|xt] =

∫
x0
N (xt;x0, σ

2
t I) exp(−E(x0))

exp(−Et(xt))
dx0 (112)

≈ exp
(
−
(
E(x0|t)− Et(xt)

))
x0|t (113)

where x0|t ∼ N (x;xt, σ
2
t I). Given learned noised energy, we can approximate this denoiser

estimator as follows:

Dθ(xt, t) : = exp
(
−
(
E(x0|t)− Eθ(xt, t)

))
x0|t (114)

D̃θ(xt, t) : = exp
(
−
(
Eθ(x0|t, 0)− Eθ(xt, t)

))
x0|t (115)

where we can alternatively use Dθ or D̃θ according to the accessability of clean energy E , the relative
computation between E(x) and Eθ(x, t), and the accuracy of Eθ(x, 0).

H TWEEDEM: A MIDDLE POINT BETWEEN DENOISING ENERGY MATCHING
AND ENERGY FLOW MATCHING THROUGH TWEEDIE’S FORMULA

In this supplementary work, we propose TWEEDIE DEM (TweeDEM), by leveraging the Tweedie’s
formula (Efron, 2011) into DEM, i.e. ∇x log pt(x) = Ep(x0|xt)

[
x0−xt

σ2
t

]
. Surprisingly, TweeDEM

can be equivalent to the iEFM-VE proposed by Woo & Ahn (2024), which is a variant of iDEM
corresponding to another family of generative model, flow matching.

We first derive an MC denoiser estimator, i.e. the expected clean data given a noised data xt at t

E[x0|xt] =

∫
x0p(x0|xt)dx0 (116)

=

∫
x0

qt(xt|x0)p0(x0)

pt(xt)
dx0 (117)

=

∫
x0
N (xt;x0, σ

2
t I) exp(−E(x0))

exp(−Et(xt))
dx0 (118)

where the numerator can be estimated by an MC estimator EN (xt,σ2
t I)

[x exp(−E(x))] and the
denominator can be estimated by another similar MC estimator EN (xt,σ2

t I)
[exp(−E(x))], suggesting

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 2: Comparison between DEM, DDM, and TweeDEM.

Score estimator:
∑

i wisi, with wi = Softmax(w̃)[i]

Sampler↓ Components→ Weight Type w̃i Score Type si

DEM(Akhound-Sadegh et al., 2024) System Energy exp(−E(x(i)
0|t)) System Score −∇E(x(i)

0|t))

DDM(Karras et al., 2022) Gaussian Density N (x
(i)
0|t;xt, σ

2
t I) Gaussian Score ∇ logN (x

(i)
0|t;xt, σ

2
t I)

TweeDEM System Energy exp(−E(x(i)
0|t)) Gaussian Score ∇ logN (x

(i)
0|t;xt, σ

2
t I)

we can approximate this denoiser through self-normalized importance sampling as follows

DK(xt, t) : =

K∑
i=1

exp(−E(x(i)
0|t))∑K

j=1 exp(−E(x
(j)
0|t))

x
(i)
0|t (119)

=

K∑
i=1

wix
(i)
0|t (120)

where x
(i)
0|t ∼ N (xt, σ

2
t I), wi are the importance weights and DK(xt, t) ≈ E[x0|xt]. Then a new

MC score estimator can be constructed by plugging the denoiser estimator DK into Tweedie’s formula

S̃K(xt, t) :=

K∑
i=1

wi

x
(i)
0|t − xt

σ2
t

(121)

where
x
(i)

0|t−xt

σ2
t

resembles the vector fields vt(xt) in Flow Matching. In another perspective, these

vector fields can be seen as scores of Gaussian, i.e. ∇ logN (x;xt, σ
2
t I), and therefore S̃K is

an importance-weighted sum of Gaussian scores while SK can be expressed as an importance-
weighted sum of system scores −∇E . In addition, Karras et al. (2022) demonstrates that in
Denoising Diffusion Models, the optimal scores are an importance-weighted sum of Gaussian
scores, while these importance weights are given by the corresponding Gaussian density, i.e.
SDM(xt, t) =

∑
i w̃i(x

(i)
0|t − xt)/σ

2
t and w̃i ∝ N (x

(i)
0|t;xt, σ

2
t I). We summarize these three dif-

ferent score estimators in Table 2.

I EXPERIMENTAL DETAILS

I.1 ENERGY FUNCTIONS

GMM. A Gaussian Mixture density in 2-dimensional space with 40 modes, which is proposed by
Midgley et al. (2023). Each mode in this density is evenly weighted, with identical covariances,

Σ =

(
40 0
0 40

)
(122)

and the means {µi}40i=1 are uniformly sampled from [−40, 40]2, i.e.

pgmm(x) =
1

40

40∑
i=1

N (x;µi,Σ) (123)

Then its energy is defined by the negative-log-likelihood, i.e.

EGMM (x) = − log pgmm(x) (124)
For evaluation, we sample 1000 data from this GMM with TORCH.RANDOM.SEED(0) following
Midgley et al. (2023); Akhound-Sadegh et al. (2024) as a test set.

DW-4. First introduced by Köhler et al. (2020), the DW-4 dataset describes a system with 4 particles
in 2-dimensional space, resulting in a task with dimensionality d = 8. The energy of the system is
given by the double-well potential based on pairwise Euclidean distances of the particles,

EDW (x) =
1

2τ

∑
ij

a(dij − d0) + b(dij − d0)
2 + c(dij − d0)

4 (125)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

where a, b, c and d0 are chosen design parameters of the system, τ the dimensionless temperature
and dij = ∥xi − xj∥2 are Euclidean distance between two particles. Following Akhound-Sadegh
et al. (2024), we set a = 0, b = −4, c = 0.9 d0 = 4 and τ = 1, and we use validation and test set
from the MCMC samples in Klein et al. (2023a) as the “Ground truth” samples for evaluating.

LJ-n. This dataset describes a system consisting of n particles in 3-dimensional space, resulting in a
task with dimensionality d = 3n. Following Akhound-Sadegh et al. (2024), the energy of the system
is given by ETot(x) = ELJ(x) + cEosc(x) with the Lennard-Jones potential

ELJ(x) =
ϵ

2τ

∑
ij

((
rm
dij

)6

−
(
rm
dij

)12
)

(126)

and the harmonic potential

Eosc(x) = 1

2

∑
i

∥xi − xCOM∥2 (127)

where dij = ∥xi − xj∥2 are Euclidean distance between two particles, rm, τ and ϵ are physical
constants, xCOM refers to the center of mass of the system and c the oscillator scale. We use rm = 1,
τ = 1, ϵ = 1 and c = 0.5 the same as Akhound-Sadegh et al. (2024). We test our models in LJ-13
and LJ-55, which correspond to d = 65 and d = 165 respectively. And we use the MCMC samples
given by Klein et al. (2023a) as a test set.

I.2 EVALUATION METRICS

2-Wasserstein distanceW2. Given empirical samples µ from the sampler and ground truth samples
ν, the 2-Wasserstein distance is defined as:

W2(µ, ν) = (infπ

∫
π(x, y)d2(x, y)dxdy)

1
2 (128)

where π is the transport plan with marginals constrained to µ and ν respectively. Following Akhound-
Sadegh et al. (2024), we use the Hungarian algorithm as implemented in the Python optimal transport
package (POT) (Flamary et al., 2021) to solve this optimization for discrete samples with the
Euclidean distance d(x, y) = ∥x− y∥2. x−W2 is based on the data and E −W2 is based on the
corresponding energy.

Total Variation (TV). The total variation measures the dissimilarity between two probability distri-
butions. It quantifies the maximum difference between the probabilities assigned to the same event
by two distributions, thereby providing a sense of how distinguishable the distributions are. Given
two distribution P and Q, with densities p and q, over the same sample space Ω, the TV distance is
defined as

TV (P,Q) =
1

2

∫
Ω

|p(x)− q(x)|dx (129)

Following Akhound-Sadegh et al. (2024), for low-dimentional datasets like GMM, we use 200 bins
in each dimension. For larger equivariant datasets, the total variation distance is computed over the
distribution of the interatomic distances of the particles.

I.3 EXPERIMENT SETTINGS

We pin the number of reverse SDE integration steps for iDEM, NEM, BNEM and TweeDEM (see
Appendix H) as 1000 and the number of MC samples as 1000 in most experiments, except for the
ablation studies.

GMM-40. For the basic model fθ, we use an MLP with sinusoidal and positional embeddings which
has 3 layers of size 128 as well as positional embeddings of size 128. The replay buffer is set to a
maximum length of 10000.

During training, the generated data was in the range [−1, 1] so to calculate the energy it was scaled
appropriately by unnormalizing by a factor of 50. Baseline models are trained with a geometric

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 3: Neural sampler performance comparison for 4 different energy functions. We measured the
performance using data Wasserstein-2 distance (x-W2), Energy Wasserstein-2 distance (E-W2), and
Total Variation (TV). * indicates divergent training. Each sampler is evaluated with 3 random seeds
and we report the mean ± standard-deviation for each metric.

Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
DDS 15.04±2.97 305.13±186.06 0.96±0.01 0.82±0.21 558.79±787924.86 0.38±0.14 * * *
PIS 6.58±1.68 79.86±7.79 0.95±0.01 * * * * * * * *
FAB 9.08±1.41 47.60±7.24 0.79±0.07 0.62±0.02 112.70±20.33 0.38±0.02 * * * * * *
iDEM 8.21±5.43 60.49±70.12 0.82±0.03 0.50±0.03 2.80±1.72 0.16±0.01 0.87±0.00 77515.90±115028.07 0.06±0.01 2.06±0.04 169347.94±260160.98 0.16±0.02

NEM (ours) 5.28±0.89 44.56±39.56 0.91±0.02 0.48±0.02 0.85±0.52 0.14±0.01 0.87±0.01 5.01±3.14 0.03±0.00 1.90±0.01 118.58±106.63 0.10±0.02

BNEM (ours) 3.66±0.30 1.87±1.00 0.79±0.04 0.49±0.02 0.38±0.09 0.14±0.01 0.86±0.00 1.02±0.69 0.03±0.00 1.87±0.05 821060.12±1397674.81 0.15±0.07

noise schedule with σmin = 1e − 5, σmax = 1; NEM and BNEM are trained with a cosine noise
schedule with σmin = 0.001 and σmax = 1. We use K = 500 samples for computing the Bootstrap
energy estimator EB

K . We clip the norm of SK , sθ and∇Eθ to 70 during training and sampling. The
variance controller for BNEM is set to be β = 0.2. All models are trained with a learning rate of
5e− 4.

DW-4. All models use an EGNN with 3 message-passing layers and a 2-hidden layer MLP of size
128. All models are trained with a geometric noise schedule with σmin = 1e− 5, σmax = 3 and a
learning rate of 1e − 3 for computing SK and EK . We use K = 500 samples for computing the
Bootstrap energy estimator EB

K . We clip the norm of SK , sθ, and ∇Eθ to 20 during training and
sampling. The variance controller for BNEM is set to be β = 0.2.

LJ-13. All models use an EGNN with 5 hidden layers and hidden layer size 128. Baseline models
are trained with a geometric noise schedule with σmin = 0.01 and σmax = 2; NEM and BNEM are
trained with a geometric noise schedule with σmin = 0.001 and σmax = 6.0 to ensure the data well
mixed to Gaussian. We use a learning rate of 1e− 3, K = 500 samples for EB

K , and we clipped SK ,
sθ and∇Eθ to a max norm of 20 during training and sampling. The variance controller for BNEM is
set to be β = 0.5.

LJ-55. All models use an EGNN with 5 hidden layers and hidden layer size 128. All models are
trained with a geometric noise schedule with σmin = 0.5 and σmax = 4. We use a learning rate
of 1e − 3, K = 500 samples for EB

K . We clipped SK and sθ to a max norm of 20 during training
and sampling. And we clipped ∇Eθ to a max norm of 1000 during sampling, as our model can
capture better scores and therefore a small clipping norm can be harmful for sampling. The variance
controller for BNEM is set to be β = 0.4.

For all datasets. We use clipped scores as targets for iDEM and TweeDEM training for all tasks.
Meanwhile, we also clip scores during sampling in outer-loop of training, when calculating the
reverse SDE integral. These settings are shown to be crucial especially when the energy landscape is
non-smooth and exists extremely large energies or scores, like LJ-13 and LJ-55. In fact, targeting the
clipped scores refers to learning scores of smoothed energies. While we’re learning unadjusted energy
for NEM and BNEM, the training can be unstable, and therefore we often tend to use a slightly larger
σmin. Also, we smooth the Lennard-Jones potential through the cubic spline interpolation, according
to Moore et al. (2024). Besides, we predict per-particle energies for DW-4 and LJ-n datasets, which
can provide more information on the energy system. It shows that this setting can significantly
stabilize training and boost performance.

J SUPPLEMENTARY EXPERIENTS

J.1 MAIN RESULTS

We report a detailed version of the main table 1 in Table 3, which includes the mean and standard
deviation of metrics.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 4: Ablation Study on applying energy smoothing based on Cubic Spline for iDEM

Energy→ LJ-55 (d = 165)
Sampler ↓ x-W2↓ E-W2↓ TV↓
iDEM 2.077 ± 0.0238 169347 ± 2601160 0.165 ± 0.0146
iDEM (cubic spline smoothed) 2.086 ± 0.0703 12472 ± 8520 0.142 ± 0.0095

NEM (ours) 1.898 ± 0.0097 118.57 ± 106.62 0.0991 ± 0.0194

Table 5: Neural sampler performance comparison for 3 different energy functions. The number
after the sampler, e.g. NEM-100, represents the number of integration steps and MC samples is
100. We measured the performance using data Wasserstein-2 distance(x-W2), Energy Wasserstein-2
distance(E-W2) and Total Variation(TV).

Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
iDEM-1000 4.21±0.86 1.63±0.61 0.81±0.03 0.42±0.02 1.89±0.56 0.13±0.01 0.87±0.00 77515.90±115028.07 0.06±0.01

iDEM-100 8.21±5.43 60.49±70.12 0.82±0.03 0.50±0.03 2.80±1.72 0.16±0.01 0.88±0.00 1190.59±590, 290 0.07±0.00

NEM-1000 2.73±0.55 1.68±0.98 0.81±0.00 0.46±0.02 0.28±0.08 0.28±0.13 0.02±0.01 5.01±2.56 0.03±0.00

NEM-100 5.28±0.89 44.56±39.56 0.91±0.02 0.48±0.02 0.85±0.52 0.14±0.01 0.88±0.00 13.14±225.45 0.04±0.00

BNEM-1000 2.55±0.47 0.36±0.12 0.66±0.08 0.49±0.01 0.29±0.05 0.15±0.01 0.86±0.00 0.62±0.01 0.03±0.00

BNEM-100 3.66±0.30 1.87±1.00 0.79±0.04 0.49±0.02 0.38±0.09 0.14±0.01 0.87±0.00 5.93±3.01 0.03±0.00

J.2 COMPARING THE ROBUSTNESS OF ENERGY-MATCHING AND SCORE-MATCHING

In this section, we discussed the robustness of the energy-matching model(NEM) with the score-
matching model(DEM) by analyzing the influence of the numbers of MC samples used for estimators
and choice of noise schedule on the sampler’s performance.

Figure 6: Comparison of the Energy Wasserstein-2 distance in DW4 benchmark between DEM and
NEM across varying numbers of MC samples.

Robustness with limited compute budget. We first complete the robustness discussed in Section 5,
by conducting experiments on a more complex benchmark - LJ-13. reports different metrics of each
sampler in different settings, i.e. 1000 integration steps and MC samples v.s. 100 integration steps
and MC samples, and different tasks.

Robustness v.s. Number of MC samples. As in Figure 6, NEM consistently outperforms iDEM
when more than 100 MC samples are used for the estimator. Besides, NEM shows a faster decline
when the number of MC samples increases. Therefore, we can conclude that the low variance of
Energy-matching makes it more beneficial when we boost with more MC samples.

Robustness v.s. Different noise schedules. Then, we evaluate the performance differences when
applying various noise schedules. The following four schedules were tested in the experiment:

• Geometric noise schedule: The noise level decreases geometrically in this schedule. The
noise at step t is given by: σt = σ1−t

0 · σt
1 where σ0 = 0.0001 is the initial noise level,

σ1 = 1 is the maximum noise level, and t is the time step.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

(a) Geometric: 4.16 (b) Cosine: 6.32 (c) Quadratic: 3.95 (d) Linear: 9.87

(a) Geometric: 2.64 (b) Cosine: 2.29 (c) Quadratic: 2.53 (d) Linear: 3.13

Figure 7: Comparison of different sampler (Above: iDEM; Below: NEM) when employing different
noise schedules. The performances of x-W2 are listed.

• Cosine noise schedule: The noise level follows a cosine function over time, represented by:
σt = σ1 · cos(π/2 1+δ−t

1+δ)2, where δ = 0.008 is a hyper-parameter that controls the decay
rate.

• Quadratic noise schedule: The noise level follows a quadratic decay:σt = σ0t
2 where σ0

is the initial noise level. This schedule applies a slow decay initially, followed by a more
rapid reduction.

• Linear noise schedule: In this case, the noise decreases linearly over time, represented as:
σt = σ1t

The experimental results are depicted in Figure 7. It is pretty obvious that for iDEM the performance
varied for different noise schedules. iDEM favors noise schedules that decay more rapidly to 0 when
t approaches 0. When applying the linear noise schedules, the samples are a lot more noisy than other
schedules. This also proves our theoretical analysis that the variance would make the score network
hard to train. On the contrary, all 4 schedules are able to perform well on NEM. This illustrates that
the reduced variance makes NEM more robust and requires less hyperparameter tuning.

Robustness in terms of Outliers. Based on Figure 3, we set the maximum energy as (GMM-40: 100;
DW-4: 0; LJ-13: 0; LJ-55: −150). We remove outliers based on these thresholds and recomputed
the E-W2. We report the new values as well as percentage of outliers in Table 6, which shows that
the order of performance (BNEM>NEM>iDEM) still holds in terms of better E-W2 value and less
percentage of outliers.

Table 6: E-W2 w/o outliers (outlier%) for different models and datasets. Bold indicates the best value
and underline indicates the second one.

Sampler↓ Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
iDEM 0.138 (0.0%) 8.658 (0.02%) 88.794 (4.353%) 21255 (0.29%)
NEM (ours) 0.069 (0.0%) 4.715 (0.0%) 5.278 (0.119%) 98.206 (0.020%)
BNEM (ours) 0.032 (0.0%) 1.050 (0.0%) 1.241 (0.025%) 11.401 (0.0%)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

(a) Ground truth energy across t ∈ [0, 1]

(b) Expected variance of estimators (c) Point-wise variance for t ∈ [0.9, 1]

Figure 8: (a) the ground truth energy of the target GMM from t = 0 to t = 1; (b) the estimation
of expected variance of x from t = 0 to t = 1, computed by a weighted sum over the variance of
estimator at each location with weights equal to the marginal density pt; (c) the variance of MC score
estimator and MC energy estimator, and their difference (Var[score]-Var[energy]) for t from 0.9 to 1,
we ignore the plots from t ∈ [0, 0.9] since the variance of both estimators are small. The colormap
ranges from blue (low) to red (high), where blues are negative and reds are positive.

J.3 EMPIRICAL ANALYSIS OF THE VARIANCE OF EK AND SK

To justify the theoretical results for the variance of the MC energy estimator (9) and MC score
estimator (7), we first empirically explore a 2D GMM. For better visualization, the GMM is set to be
evenly weighted by 10 modes located in [−1, 1]2 with identical variance 1/40 for each component,
resulting in the following density

p′GMM (x) =
1

10

10∑
i=1

N
(
x;µi,

1

40
I

)
(130)

while the marginal perturbed distribution at t can be analytically derived from Gaussian’s property:

pt(x) = (p′GMM ∗ N (0, σ2
t))(xt) =

1

10

10∑
i=1

N
(
x;µi,

(
1

40
+ σ2

t

)
I

)
(131)

given a VE noising process.

We empirically estimate the variance for each pair of (xt, t) by simulating 10 times the MC estimators.
Besides, we estimate the expected variance over x for each time t, i.e. Ept(xt)[Var(EK(xt, t))] and
Ept(xt)[Var(SK(xt, t))].

Figure 8a shows that, the variance of both MC energy estimator and MC score estimator increase
as time increases. In contrast, the variance of EK can be smaller than that of SK in most areas,
especially when the energies are low (see Figure 8c), aligning our Proposition 2. Figure 8b shows
that in expectation over true data distribution, the variance of EK is always smaller than that of SK

across t ∈ [0, 1].

J.4 EMPIRICAL ANALYSIS OF THE BIAS OF BOOTSTRAPPING

To show the improvement gained by bootstrapping, we deliver an empirical study on the GMM-40
energy in this section. As illustrated in Section I.3, the modes of GMM-40 are located between
[−40, 40]2 with small variance. Therefore, the sub-Gaussianess assumption is natural. According
to Proposition A and Proposition B, the analytical bias of the MC energy estimator (Eq. 9) and
Bootstrapped energy estimator (Eq. 55) can be computed by Eq. 24 and Eq. ??, respectively. We

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

provide these two bias terms here for reference,

Bias(EK(xt, t)) =
v0t(xt)

2mt(xt)2K
(132)

Bias(EK(xt, t, s; θ)) =
v0t(xt)

2m2
t (xt)Kn+1

+

n∑
j=1

v0sj (xt)

2m2
sj (xt)Kj

(133)

Given a Mixture of Gaussian with K components, p0(x) =
∑

k πkN (x;µk,Σk) and E(x) =
− log p0(x), mt(x) and v0t can be calculated as follows:

mt(xt) = exp(−Et(xt)) (134)

=

∫
N (xt;x, σ

2
t I) exp(−E(x))dx (135)

=

∫
N (xt;x, σ

2
t I)p0(x)dx (136)

=
∑
k

πk

∫
N (xt;x, σ

2
t I)N (x;µk,Σk)dx (137)

=
∑
k

πkN (xt;µk, σ
2
t I +Σk) (138)

v0t(xt) = VarN (x;xt,σ2
t I)

(exp(−E(X))) (139)

=

∫
N (xt;x, σ

2
t I)p0(x)

2dx−m2
t (xt) (140)

=
∑
j,k

πjπk

∫
N (xt;x, σ

2
t I)N (x;µk,Σk)N (x;µj ,Σj)dx−m2

t (xt) (141)

=
∑
j,k

πjπk

∫
N (xt;x, σ

2
t I)N (x;µjk,Σjk)Cjk

|Σjk|1/2

(2π)d/2|Σj |1/2|Σk|1/2
dx−m2

t (xt)

(142)

=
∑
j,k

πjπkCjk
|Σjk|1/2

(2π)d/2|Σj |1/2|Σk|1/2
N (xt;µjk, σ

2
t I +Σjk)−m2

t (xt) (143)

where

Σjk = (Σ−1
j +Σ−1

k)−1 (144)

µjk = Σjk(Σ
−1
j µj +Σ−1

k µk) (145)

Cjk = exp

(
−1

2

[
µ⊤
j Σ

−1
j µj + µ⊤

k Σ
−1
k µk − (Σ−1

j µj +Σ−1
k µk)

⊤Σjk(Σ
−1
j µj +Σ−1

k µk)
])
(146)

In our GMM-40 case, the covariance for each component are identical and diagonal, i.e. Σk ≡ Σ =
vI . By plugging it into the equations, we can simplify the mt(xt) and v0t(xt) terms as follows

mt(xt) =
∑
k

1

K
N (xt;µk, (σ

2
t + v)I) (147)

v0t(xt) =
∑
j,k

1

K2

exp
(
− 1

4v (µj − µk)
⊤(µj − µk)

)
√
2(2πv)

N
(
xt;

1

2
(µj + µk), (σ

2
t + v/2)I

)
−m2

t (xt)

(148)

We computed the analytical bias terms and visualize in Figure 9. Figure 9a visualizes the bias of
the both NEM and BNEM over the entire space. It shows that (1) bootstrapped energy estimator
can have less bias (contributed by bias of EK and variance of training target); (2) If EK is already
bias, i.e. the “red” regions in the first row of Figure 9a when t = 0.1, bootstrapping can not gain
any improvement, which is reasonable; (3) However, if EK has low bias, i.e. the “blue” regions

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 7: Time complexity of different neural samplers.

Sampler↓ Phase→ Inner-loop Outer-loop (or Sampling)

iDEM O (L(2KΓE(B) + 2ΓNN(B))) O (TΓNN(B))
NEM (ours) O (L(KΓE(B) + 2ΓNN(B))) O (2TΓNN(B))
BNEM (ours) O (L(KΓNN(B) + 2ΓNN(B))) O (2TΓNN(B))

Table 8: Time comparison (in seconds) of different samplers for both inner-loop and outer-loop across
different energies.

Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ Inner-loop Outer-loop Inner-loop Outer-loop Inner-loop Outer-loop Inner-loop Outer-loop
iDEM 1.657 1.159 6.783 2.421 21.857 21.994 36.158 47.477
NEM (ours) 1.658 2.252 5.217 8.517 14.646 52.563 17.171 114.601
BNEM (ours) 1.141 2.304 25.552 7.547 68.217 52.396 113.641 115.640

when t = 0.1, the Bootstrapped energy estimator can result in lower bias estimation, superioring MC
energy estimator; (4) In low energy region, both MC energy estimator and Bootstrapped one result
in accurate estimation. However, in a bi-level iterated training fashion, we always probably explore
high energy at the beginning. Therefore, due to the less biasedness of Bootstrapped estimator at high
energy regions, we’re more likely to have more informative pseudo data which can further improve
the model iteratively.

On the other hand, we ablate different settings of Num. of MC samples and the variance-control (VC)
parameter. We visualize the results in Figure 9b. The results show that, with proper VC, bootstrapping
allows us to reduce the bias with less MC samples, which is desirable in high-dimensional and more
complex problems.

(a) Bias with VC=0.1 (b) Bias with different VC and Num. MC samples.

Figure 9: Empirical analysis on bias with bootstrapping, on GMM-40.

J.5 COMPLEXITY ANALYSIS

To compare the time complexity between iDEM, NEM and BNEM, we let: (1) In the outer-loop
of training, we have T integration steps and batch size B; (2) In the inner-loop, we have L epochs
and batch size B. Let ΓNN(B) be the time complexity of evaluating a neural network w.r.t. B data
points, ΓE(B) be the time complexity of evaluating the clean energy w.r.t. B data points, and K be
the number of MC samples used. Since differentiating a function f using the chain rule requires
approximately twice the computation as evaluating f , we summurise the time complexity of iDEM,
NEM, and BNEM in Table 7. It shows that in principle, in the inner-loop, NEM can be slightly faster
than iDEM, while BNEM depends on the relativity between complexity of evaluating the neural
network and evaluating the clean energy function.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Table 9: Comparison between iDEM, NEM, and BNEM, with similar computational budget.

Energy→ LJ-13 (d = 39) LJ-55 (d = 165)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
iDEM 0.870 6670 0.0600 2.060 17651 0.160
NEM-500 (ours) 0.870 31.877 0.0377 1.896 11018 0.0955
BNEM-500 (ours) 0.866 2.242 0.0329 1.890 25277 0.113

Table 10: Performance comparison between NEM and ME-NEM.

Energy→ GMM-40 (d = 2) DW-4 (d = 8) LJ-13 (d = 39)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
NEM (ours) 1.808 0.846 0.838 0.479 2.956 0.14 0.866 27.362 0.0369
ME-NEM (ours) 2.431 0.107 0.813 0.514 1.649 0.164 0.88 20.161 0.0338

Table 8 reports the time usage per inner-loop and outer-loop. It shows that due to the need for
differentiation, the sampling time, i.e. outer-loop, of BNEM/NEM is approximately twice that of
iDEM. In contrast, the inner-loop time of NEM is slightly faster than that of iDEM, matching the
theoretical time complexity, and the difference becomes more pronounced for more complex systems
such as LJ-13 and LJ-55. For BNEM, the sampling time is comparable to NEM, but the inner-loop
time depends on the relative complexity of evaluating the clean energy function versus the neural
network, which can be relatively higher.

J.6 PERFORMANCE GAIN UNDER THE SAME COMPUTATIONAL BUDGET

It’s noticable that computing the scores by differentiating the energy network outputs, i.e.
∇xt

Eθ(xt, t), requires twice of computation compared with iDEM which computes sθ(xt, t) by one
neural network evaluation. In this section, we limit the computational budget during sampling of both
NEM and BNEM by reducing their integration steps to half. We conduct experiment on LJ-13 and
LJ-55, where we reduce the reverse SDE integration steps in both NEM and BNEM from 1000 to
500. Metrics are reported in Table 9. It shows that with similar computation, NEM and BNEM can
still outperform iDEM.

J.7 EXPERIMENTS FOR MEMORY-EFFICIENT NEM

In this section, we conduct experiments on the proposed Memory-Efficient NEM (ME-NEM). The
number of integration steps and MC samples are all set to 1000. ME-NEM is proposed to reduce
the memory overhead caused by differentiating the energy network in NEM, which leverages the
Tweedie’s formula to establish a 1-sample MC estimator for the denoising score. In principle,
ME-NEM doesn’t require neural network differentiation, avoiding saving the computational graph.
Though it still requires evaluating the neural network twice (see Eq. 115), this only requires double
memory usage of iDEM and can be computed parallelly, resulting in a similar speed of sampling with
iDEM. In this section, we simply show a proof-of-concept experiment on ME-NEM, while leaving
more detailed experiments as our future work.

Table 10 reports the performance of NEM and ME-NEM, showcasing that ME-NEM can achieve
similar results even though it leverages another MC estimator during sampling.

J.8 EXPERIMENTS FOR TWEEDEM

In Appendix H, we propose TweeDEM, a variant of DEM by leveraging Tweedie’s formula (Efron,
2011), which theoretically links iDEM and iEFM-VE and suggests that we can simply replace the
score estimator SK (7) with S̃K (121) to reconstruct a iEFM-VE. We conduct experiments for this
variant with the aforementioned GMM and DW-4 potential functions.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

(a) S̃K (ours) (b) SK (c) TweeDEM (ours) (d) DEM

Figure 10: Sampled points from samplers applied to GMM-40 potentials, with the ground truth
represented by contour lines. S̃K and SK represent using these ground truth estimators for reverse
SDE integration.

Setting. We follow the ones aforementioned, but setting the steps for reverse SDE integration 1000,
the number of MC samples 500 for GMM and 1000 for DW-4. We set a quadratic noise schedule
ranging from 0 to 3 for TweeDEM in DW-4.

To compare the two score estimators SK and S̃K fundamentally, we first conduct experiments
using these ground truth estimations for reverse SDE integration, i.e. samplers without learning.
In addition, we consider using a neural network to approximate these estimators, i.e. iDEM and
TweeDEM.

Table 11 reports x-W2, E−W2, and TV for GMM and DW-4 potentials. Table 11 shows that when
using the ground truth estimators for sampling, there’s no significant evidence demonstrating the
privilege between SK and S̃K . However, when training a neural sampler, TweeDEM can significantly
outperform iDEM (rerun), iEFM-VE, and iEFM-OT for GMM potential. While for DW4, TweeDEM
outperforms iEFM-OT and iEFM-VE in terms of x−W2 but are not as good as our rerun iDEM.

Figure 10 visualizes the generated samples from ground truth samplers, i.e. SK and S̃K , and neural
samplers, i.e. TweeDEM and iDEM. It shows that the ground truth samplers can generate well mode-
concentrated samples, as well as TweeDEM, while samples generated by iDEM are not concentrated
on the modes and therefore result in the high value ofW2 based metrics. Also, this phenomenon
aligns with the one reported by Woo & Ahn (2024), where the iEFM-OT and iEFM-VE can generate
samples more concentrated on the modes than iDEM.

Above all, simply replacing the score estimator SK with S̃K can improve generated data quality and
outperform iEFM in GMM and DW-4 potentials. Though TweeDEM can outperform the previous
state-of-the-art sampler iDEM on GMM, it is still not as capable as iDEM on DW-4. Except scaling
up and conducting experiments on larger datasets like LJ-13, combing SK and S̃K is of interest in
the future, which balances the system scores and Gaussian ones and can possibly provide more useful
and less noisy training signals. In addition, we are considering implementing a denoiser network for
TweeDEM as our future work, which might stabilize the training process.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Table 11: Sampler performance comparison for GMM-40 and DW-4 energy function. we measured
the performance using data Wasserstein-2 distance(x-W2), Energy Wasserstein-2 distance(E-W2),
and Total Variation(TV). †We compare the optimal number reported by Woo & Ahn (2024) and
Akhound-Sadegh et al. (2024). . - indicates metric non-reported.

Energy→ GMM-40 (d = 2) DW-4 (d = 8)
Sampler ↓ x-W2↓ E-W2↓ TV↓ x-W2↓ E-W2↓ TV↓
SK 2.864 0.010 0.812 1.841 0.040 0.092
S̃K (ours) 2.506 0.124 0.826 1.835 0.145 0.087
iDEM† 3.98 - 0.81 2.09 - 0.09
iDEM (rerun) 6.406 46.90 0.859 1.862 0.030 0.093
iEFM-VE† 4.31 - - 2.21 - -
iEFM-OT† 4.21 - - 2.07 - -

TweeDEM (ours) 3.182 1.753 0.815 1.910 0.217 0.120

34

	Introduction
	Preliminary
	Methods
	Overview of NEM framework
	denoising diffusion-based Boltzmann sampler
	Energy-based learning VS Score-based learning
	Improvement with bootstrapped energy estimation

	Related works
	Experiments
	Main Results
	Robustness of DEM, NEM, and BNEM

	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2
	Ideal Bootstrap Estimator Recursive Estimator
	Proof of Proposition 3
	Bootstrap(1) estimator
	Bootstrap(n) estimator

	Incorporating Symmetry Using NEM
	Generalizing NEM
	NEM for General SDEs
	MC Energy Estimator as an Importance-Weighted Estimator

	Memory-Efficient NEM
	TweeDEM: a middle point between Denoising Energy Matching and Energy Flow Matching through Tweedie's formula
	Experimental Details
	Energy functions
	Evaluation Metrics
	Experiment Settings

	Supplementary Experients
	Main Results
	Comparing the Robustness of Energy-Matching and Score-Matching
	Empirical Analysis of the Variance of EK and SK
	Empirical Analysis of the Bias of Bootstrapping
	Complexity Analysis
	Performance Gain Under the Same Computational Budget
	Experiments for Memory-Efficient NEM
	Experiments for TweeDEM

